
AD-A272 279
AEROSPACE REPORT NO.
TR-92(2940)-3

On the Theory of Morphology-Dependent Resonances:
Shape Resonances, Width Formulas, and Graphical

Representations

Prepared by

B. R. JOHNSON
Space and Environment Technology Center

Technology Operations

DTIC
26 October 1993 ELECTE

Prepared for

SPACE AND MISSILE SYSTEMS CENTER .........
AIR FORCE MATERIEL COMMAND

2430 E. El Segundo Boulevard
Los Angeles Air Force Base, CA 90245

Engineering and Technology Group

THE AEROSPACE CORPORATION

El Segundo, California

APPROVED FOR PUBLIC RELEASE:

93-26,561 DISTRIBUTION UNLIMITED

/ llll /Iil/i/l ll/ l/I/ /// ll/ /IC/i



This report was submitted by The Aerospace Corporation, El Segundo, CA 90245-4691, under
Contract No. F04701-93-C-0094 with the Space and Missile Systems Center, 2430 E. El Segundo
Blvd., Los Angeles Air Force Base, CA 90245. It was reviewed and approved for The Aerospace
Corporation by A. B. Christensen, Principal Director, Space and Environment Technology
Center. Capt. Francis K. Chun was the project officer for the Mission-Oriented Investigation and
Experimentation (MOIE) program.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the National
Technical Information Service (NTIS). At NTIS, it will be available to the general public,
including foreign nationals.

This technical report has been reviewed and is approved for publication. Publication of this
report does not constitute Air Force approval of the report's findings or conclusions. It is
published only for the exchange and stimulation of ideas.

WM KYLE SNEDDON, Capt, USAF
Deputy Chief, Industrial & Int'l Divis /<v<

FRANCIS K. CHUN, Capt, USAF
Deputy Chief, Brilliant Eyes Test & Mission Ops Branch



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILIrY OF REPORT

2b. DECLASSIFICATIONiDOWNGRADING SCHEDULE Approved for public release; distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

TR-92(2940)-3 SMC-TR-93-54

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
The Aerospace Corporation Space and Missile Systems Center
Technology Operations S

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

El Segundo, CA 90245-4691 Los Angeles Air Force Base
Los Angeles, CA 90009-2960

8a. NAME OF FUNDINGSPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (Nf applicable)________________________jF04701-88-C-0089

Sc. ADDRESS (City, Slate, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Ctassllacation)

On the theory of morphology-dependent resonances: Shape resonances, width formulas
and graphical representations

12. PERSONAL AUTHOR(S)

Johnson, B. Robert
13a. TYPE OF REPORT 13b. TIME COVER;71D 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

FROM TO _ _ 1993 October 26 42
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necessary and identify by block numnber)

FIELD GROUP SUB-GROUP
Morphology-dependent resonance, Shape resonance, Mie scattering

19. ABSTRACT (ConUnue on reverse i9 necessary and idantfy by block number)

The theory of morphology-dependent resonances of a spherical particle is developed in analogy with the theory
of quantum mechanical shape resonances. Exact analytic formulas for predicting the widths of the resonances
are developed. A useful graphical procedure for organizing and displaying data for a spectrum of resonances is
demonstrated.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

E UNCLASSIFIDAJUNLIMrTED ED SAME AS RPT. oTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DO FORM 1473,84 MAR 83 APR editon may be used nill exKhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other eddios ar obsolete. UNCLASSIFIED



PREFACE

This report presents the results of work sponsorea by the USAF Space and Missile Systems Center
under Contract No. F04701-88-C-0089.

Aoeession For
NVIS WA&I
DTIO TAB 0
Vnamottood
Justitloatlon

By
Distri bution/

Availability Oodoe
AIA~ and/or

Diet Speclal



CONTENTS

1. IN T R O D U C T IO N ................................................................................................................. 7

2. SCA'1fERING THEORY ................................................................................................ 9

3. RESO N AN CE THEO RY ..................................................................................................... 15

3.1 QUANTUM MECHANICAL ANALOGY .............................................................. 15

3.2 MDRS INTERPRETED AS SHAPE RESONANCES ............................................. 17

3.3 PARTICLES WITH NEGATIVE DIELECTRIC FUNCTIONS .............................. 23

4. RESON AN CE W IDTH S ...................................................................................................... 27

4.1 TE RESONANCE, REAL INDEX OF REFRACTION ........................................... 27

4.2 TM RESONANCE, REAL INDEX OF REFRACTION ........................................... 29

4.3 TE RESONANCE, COMPLEX INDEX OF REFRACTION .................................... 29

4.4 TM RESONANCE, COMPLEX INDEX OF REFRACTION ..................................... 32

5. GRAPHICAL REPRESENTATION OF THE RESONANCE SPECTRUM ......................... 35

6. SUMMARY AND CONCLUDING REMARKS ................................................................ 39

R E FE R E N C E S ......................................................................................................................... 4 1

3



FIGURES

1. Effective potential associated with a spherical dielectric particle ...................................... 17

2. Graphical Solution to Eqs. (26a,b) ................................................................................ 20

3. Radial wave functions for thc three TE, n = 40 resonances........................................... 21

4. Behavior of the TE wave function in the vicinity of a resonance .................................... 22

5. Effective potential function for a layered sphere with a positive dielectric
core covered by a negative dielectric layer .................................................................... 23

6. Effective potential associated with a negative dielectric particle .................................... 24

7. Graphical representation of TE resonance parameters for a spherical
particle with index of refraction m = 1.47 .................................................................. 35

8. Width contours for TE resonances of a particle with a complex index
of refraction m = 1.47 + i 0.000001 ............................................................................. 37

9. Height contours for the TE resonances of a particle with complex
index of refraction m = 1.47 + i 0.000001 ................................................................. 38

5



1. INTRODUCTION

The cross section for scattering electromagnetic energy by a dielectric sphere exhibits a series of
sharp peaks as a function of the size parameter. These peaks are a manifestation of scattering
resonances in which electromagnetic energy is temporarily trapped inside the particle. A physical
interpretation is that the electromagnetic wave is trapped by almost total internal reflection as it
propagates around the inside surface of the sphere, and after circumnavigating the sphere, the
wave returns to its starting point in phase. These resonances are now generally referred to as
morphology-dependent resonances (MDRs). A large body of literature has been written on the
subject. A good review article, containing many references to the original literature, has recently
been written by Hill and Benner.1

MDRs are responsible for the ripple structure observed in Mie scattering 2 and for the large opti-
cal feedback necessary for lasing,3,4 stimulated Raman scattering,5 sum-frequency generation, 6

and other nonlinear processes that have been observed in small droplets. Stimulated Raman scat-
tering from small spheres has been proposed as a method for analyzing the chemical concentra-
tion and size of droplets in fuel sprays, 7 and the elastic scattering of light near an MDR has been
used to detcrmine chemical composition of aerosol particles.8 MDRs are also responsible for
enhanced energy transfer that has been observed in aerosol particles. 9 Laboratory demonstra-
tions have recently shown that the MDRs of an ensemble of microspheres can be utilized to con-
struct a new type of optical memory. 10

The present paper covers three topics in the theory of MDRs. These are (i) an interpretation of
MDRs as "shape resonances;" (ii) the derivation of exact analytic formulas for predicting the
widths of resonances; and (iii) the demonstration of a useful graphical procedure for displaying
resonance data. The theory of shape resonances is a familiar topic in atomic and molecular
scattering theory; however, the fact that MDRs can be regarded as shape resonances does not
seem to be widely appreciated. In this interpretation, the electromagnetic energy is temporarily
trapped near the surface of the sphere in a "dielectric potential well." The energy enters and exits
the well by tunneling through a centrifugal barrier. Recently this problem has been studied using
complex angular momentum theory. 11,12

This report is organized as follows. Section 2 begins with a review of some of the basic equations
for electromagnetic scattering from spherically symmetric particles. This section is presented
mainly as a matter of convenience. It helps to establish our conventions and notation and also
gathers together equations that will be needed later. Section 3 discusses resonance theory and
shows how MDRs can be interpreted as shape resonances. Also included in this section is a
related discussion of electromagnetic bound states in negative dielectric particles. In Section 4,
several new exact analytic formulas for predicting the widths of resonances are developed.
Formulas are derived for both real and complex indices of refraction. In Section 5, a useful
graphical procedure for organizing and displaying the data for a spectrum of resonances is pre-
sented. Section 6 includes a summary and concluding remarks.
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2. SCATTERING THEORY

This section briefly reviews the theory of electromagnetic scattering from a spherical particle.
The basic equations needed in the remainder of the report are presented, and some of the
conventions and the notation to be used are established. The particle is assumed to be
nonmagnetic. The radius of the particle is denoted by a and the complex index of refraction,
which may be a function of the radial coordinate r, is denoted by m(r) = mr(r) + imi(r). In the
region outside the sphere, r > a, the index of refraction is m(r) = 1, and the wave number is k =

2nIX. The complex time dependence of the electric field is exp(-iwt). This time-dependence
convention is the same as that used by Bohren and Huffman, 13 but is opposite of that used by
Van de Hulst14 and Kerker 15 . With this convention, a positive imaginary part of the index of
refraction results in power absorption by the particle.

The electric field must satisfy the scattering boundary conditions and the following vector wave
equation

VxVXE-k 2m 2(r)E=0. (1)

The solution to this equation is most easily computed by expanding the electric field in terms of
the spherical vector wave functions,

exp(imo) Sp (r)Xm(0)M"'m(r'O'4O) = kr r)nme
kr

N,(r,0,)= exp(im) 1 dT(r) I (r)Z.. (1)]
' J k 2m 2(r) Lr 8r + r2 (2)

where the functions Mn,m(r,0,0) are the transverse electric (TE) modes, and the functions
Nn,m(r,0,0) are the transverse magnetic (TM) modes. The angular functions in these expressions
are defined as

9



X, (0) = Wi - r.,m (O)i,

17,.m(0) = *r',•(6)e9 -i;,.,,(6)•,

Z...() =n(n + 1)•'(cos e)i, (3)

where

m

;m(0) = P.'(cos 0)
sin 0

Tr.,(2) = P(Cos 0). (4)

The function P,"'(cos 0) is the associated Legendre polynomial, and ,, •,,•, are the unit
orthogonal vectors associated with spherical coordinates. The functions S.(r) and T (r) are the
radial Debye potentials, which satisfy the following second order differential equations 16 ,17

dS(r) + k2m2(r) -n(n + 1  S.(r)=0 5a)

dr2  r r2

_____ _______ F 2  n(n +l)]

d2T,(r) 2 din(r) dT,(r) -k ( T,(r)2=O (5b)
dr2  m(r) dr dr r 27 ,(r)

The solutions to these equations must obey the initial conditions S. (0) = 0 and T. (0) = 0. These
conditions are necessary to ensure that the electric field is finite at the origin.

10



In regions where the index of refraction has the constant value m, the two differential equations
(5ab) have the same form, and the linearly independent solutions are Riccati-Bessel functions,18

which are defined as

V. (mkr) = mkrj,(mkr) 6a)

X, (mkr) = mkr n. (mkr) (6b)

where j, (mkr) and n. (mkr) are spherical Bessel functions. In the external region, r > a, where
m(r) = 1, the general solutions are linear combinations of the Riccati-Bessel functions. For later
use in this report, it will be convenient to define these external solutions as follows:

Sn(r) =B.[Z.(kr)+ P,, V,, (kr)] (7a)

T7(r) = A,[Z.(kr)+ an V,, (kr)] (7b)

where a,],.,A, and B. are constants. These functions must connect, in an appropriate manner,
at the surface of the sphere, with the solutions inside the sphere. The connection of the internal
and external solutions is most easily carried out using the log derivative formalism.

The "modified log derivative functions" of S.(r) and Tn(r) are defined as

Un (r) = l[S(r) / Sn (r)] (8a)
k

V(r) [(r) / (r)], (8b)
km'(r)

where the prime denotes the derivative with respect to the argument of the function. Both of
these functions are continuous at all points. This includes points where the index of refraction is
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discontinuous, such as at the surface of the sphere or, in the case of a layered sphere, at the
boundaries between the layers. It will also be useful to define the log derivatives of the Riccati-
Bessel functions by the relations

D. (x) x) (9a)

G,(x) =xW • x,/ W.x (9b)

Substitute the external solutions defined by (7) into the definitions of the modified logarithmic
derivatives given by (8) and evaluate at the surface of the sphere. Then use the continuity of the
functions U,. (r) and V. (r) across the boundary to obtain

U (a)-= X~'(ka) + ,,. •(ka)
x.(ka) +/3 / (ka)

_ X(ka) +a,, V. (ka)V (a) = " (ka(10b)X, (ka) + a,, V,, (ka)

where U,,(a) and V,(a) are evaluated from the internal solution. These equations can be solved
for a,, and P3.. The results are

V,(ka) [DG.(ka)-U,,(a) J

12() D.(ka) - U.(a)

a. = k)G k)-V a (Illb)
•(-ka) D,,(ka) - V, (a)
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For the special case of Mie scattering, in which the index of refraction has a constant value m, the

solutions of the differential equations (5) in the region 0 _ r _ a are given by

S,(r) = T,(r)= IV/(mkr) (12)

Substitute these functions into (8) to obtain

U,(r) = mD• (mkr) (1 3a)

V, (r) =- D, (mkr) (13b)
m

These expressions are then substituted into (11) to obtain

= .(x) [G.(x)- mD,,(mx) 1

""x DmG,(x)- D.(mx)

rx) mGZ,, ( x)--- D,-- (- - (14b)

4.(x)in mD.(x) -D(mx) J

where x = ka is the size parameter.

It can be shown that a, and f0, are related to the a. and b, coefficients of Mie theory by the
formulas

b,, (15a)1- if'

and

13



a. -(15b)

The aM and b. coefficients defined here are the same as the coefficients defined in Bohren and
Huffman13 and are the complex conjugate of the coefficients defined by Van de Hulst 14 and by
Kerker. 15 All the usual formulas for cross sections and other quantities that are expressed in
terms of the a. and b, coefficients are applicable.
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3. RESONANCE THEORY

3.1 QUANTUM MECHANICAL ANALOGY
The second-order differential equations (5) can be recast in a form similar to the radial
Schrodinger equation. This well known analogy is useful because one can then formulate
problems in such a way that familiar quantum mechanical techniques can be used. To simplify
the analogy, assume that the Schrtdinger equation is expressed in units such that A2 / 2y = 1
(where h is Plank's constant and y is the reduced mass). The radial Schrmdinger equation then
has the form

______ (n+ 1)1
dr2  L-V(r) + V (r + i)/(r) = EVp'(r) , (16)dr2 I r J 2'

where V(r) is the potential energy function and E is the total energy. Equation (5a) will be
identical in form to the Schrwdinger equation if we define the potential to be

V(r) = k2 [1 - m 2 (r)] (17)

and the energy to be

E=k2  (18)

[Equation (18) was obtained by comparing the equations for the case of free space, i.e., for
m(r) = 1 and V(r) = 0.] We note immediately that one noteworthy difference between the
quantum mechanical and electromagnetic cases is that, in the latter case, the potential function is
directly proportional to the "energy" (i.e., to k2) whereas in the former case V(r) is usually a
fixed function, independent of the energy. This difference will lead to some interesting
consequences that will be discussed in section 3.3.

The "total potential" is the sum of the potential function, V(r), and the "centrifugal" potential. It
is given by

V.(r) = k2 [1- m2 (r)] n(n+ 1)5 (19)
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The local wave number, p. (r), is defined by the relation p' (r) = E - V. (r). This can also be
written in the form

p2(r)=k 2m 2(r) n(n+(20)

The quantity p,2 (r) is analogous to the kinetic energy in quantum mechanics. A region is
classically allowed or classically forbidden depending on whether p,2 (r) is positive or negative,
respectively.

Consider the special case of a spherical particle with a constant index of refraction m. The
potential, in this case, is given by

k2( M2)+n(n+l)/r 2  ra (21)
= (21)

V.(r L n(n + 1) / r r > a .

Whether this potential is attractive or repulsive will depend on the values of both m2 and k2 . The
case of most interest in this report is that of a dielectric particle with M2 > 1 and with k2 >1.
(Other cases will be considered in Section 3.3.) As a specific example, consider the potential
function V4(r) for a particle of radius a, index of refraction m = 1.47, and wave number
k = 33 / a. For convenience, we choose the unit of length to be equal to the particle radius.
Thus, a = 1.0, and k = 33. The potential function, V4 (r), for this case, is shown drawn to scale
in Fig. 1. The most striking feature of this function is the presence of a potential well in the
region r, < r < a. This is a classically allowed region in which p,(r) > 0. The well is surrounded
by the two classically forbidden regions 0:< r < r, and a < r < r2 in which p2(r) < 0. The points
rj and r2, defined by the relation p, (r) = 0, are called the classical turning points.

In the equivalent quantum mechanical problem, a particle can tunnel through the classically for-
bidden region, a < r < r2, into the classically allowed potential well. For certain values of the
energy, the particles will become temporarily trapped in the well, oscillating back and forth many
times before finally tunneling back through the classically forbidden region to the outside world
again. These quasi-bound states are also known as resonances. The type of resonance described
here is called a shape resonance. The name "shape resonance" means simply that the resonance
behavior arises from the "shape" of the potential, i.e., the well and the barrier. 19 This particular
type of shape resonance, in which the barrier is formed by the centrifugal potential, is also referred
to as an orbiting resonance. 20 This latter name is particularly apt considering the usual interpreta-
tion of MDRs in terms of light rays propagating around the inside surface of the sphere.'
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V

0 r, a r2  r

Figure 1. Effective potential associated with a spherical dielectric particle.

3.2 MDRs INTERPRETED AS SHAPE RESONANCES
The electromagnetic scattering problem is similar to the quantum mechanical problem.
Electromagnetic energy can tunnel through the classically forbidden region and become
temporarily trapped in resonance states. As we will demonstrate, these are the familiar
morphology-dependent resonances (MDRs) predicted by Mie theory. In the following
discussion, we will assume that the index of refraction is a real quantity.

In Fig. 1, the "energy" k2 is approximately halfway between the top and bottom of the potential
well. If the value of k2 is changed, the shape of the potential well will also change. This is unlike
the quantum mechanical problem where the potential is independent of the energy. As k is
reduced in value, the bottom of the potential well will rise. For some value of k, the energy k2

will coincide with the bottom of the potential well. We will refer to this energy as the bottom of
the well and denote the value of k for which this occurs as k.. The top of the well remains fixed
in value as k2 is varied. If k2 is raised in value, it will eventually coincide with the top of the well.
We will refer to this as the top of the well and denote the value of k for which this occurs as kT.

The classical turning points are defined by the condition p. (r) = 0. Solving Eq. (20) for this
condition gives the two turning points,

n+1/2 (22a)
/on

n+1/2
r2 - k (22b)

k

17



where we have replaced [n(n + 1)112 with n + 1 / 2 and used the fact that m(rj) = m, and
m(r2) = 1. These expressions for the turning points can be used to calculate the values of k. and
kr. When k = k., the inner turning point must satisfy the relation r, = a, and when k = kr, the
outer turning point must satisfy 1.ie relation r2 = a. Substituting these conditions into Eqs. (22)
and solving for k gives k. = (n + I / 2) / ma, and kr = (n + I / 2) / a. It is more convenient to
express these relations in terms of the dimensionless size parameter x = ka rather than k. Thus,
the condition for the bottom and top of the potential well is given by

n+1/2
XB =n1 (23a)

XT =n+/12. (23b)

In quantum mechanics, only certain discrete energy levels are allowed in a one-dimensional
potential well. The mathematical reason for this is that the boundary conditions can only be
satisfied at these discrete energies. The problem of shape resonances is very similar. The
resonances occur only for energy values that satisfy the boundary conditions, which are quite
similar to the boundary conditions for the bound-state problem.

The boundary conditions at r = 0 are given by S. (0) = T.(0) = 0. These conditions, which we
stated previously, must be met by all scattering solutions regardless of whether or not they are
resonance states. The solutions that satisfy this condition are given by Eq. (12). The general
form of the solutions in the region r > a is given by Eq. (7). These functions are a linear
combination of the Riccati-Bessel functions 41,,(kr) and Z,(kr). In the classically forbidden
region, a < r < r2 , these two functions have opposite behavior. The function Vu,(kr) exhibits a
very rapid, "exponential-like" growth in this region while the function ZX (kr) exhibits an
"exponential-like" decrease. At r = r2 , these functions cease their exponential-like behavior and
begin an oscillatory behavior in the region r2 < r < -.

The condih.on that determines the discrete energy levels of a quasibound shape resonance is the
requirement that the wave function exhibit an exponential-like decay in the barrier region so that
if the barrier extended to r -- c, the wave function would decay to zero, and the quasibound
state would become a true bound state. This means that only the (exponential-like) decreasing
function X, (kr) is allowed in the barrier region. Translating this requirement back to the wave
functions defined by Eq. (7) implies that the coefficient that multiplies the (exponential-like)
increasing function V, (kr) must be zero, i.e., 1P, = 0 (a,, = 0) at the location of a TE (TM)
resonance, respectively. These conditions, which were obtained by satisfying the conditions for a
shape resonance, are equivalent to the conditions commonly used to define the location of a
morphology-dependent resonance.1 This is evident from Eqs. (15a,b), which show that fin = 0
(a., = 0) is equivalent to the condition that the imaginary part of the Mie coefficient b. (a.) be
equal to zero.

18



Substituting .6. = 0 and a, = 0 into the Eqs. (14) give the following equations that must be
satisfied at the locations of TE and TM resonances, respectively:

G.(xo) =rD.(mxo) (24a)

mG,(x,) = D.(mx=) (24b)

A graphical illustration of these equations is quite illuminating. For this illustration, it is
somewhat more convenient to work with the following functions;

d,(mx) = D.'(mx) 25a)

g(TE)(X) = mG.-1 (x) (25b)

S= 1(25c)
m

The conditions, given by Eqs. (24), for the TE and TM resonances are now expressed as

g(TE)(x) = d,, (mx) (26a)

g(') (x) = dr(mx). (26b)

These functions are shown graphically in Fig. 2 for the case m = 1.47 and n = 40. The
intersection points of the curves are the graphical solutions to the resonance equations. It is
obvious from the graph that the n = 40 potential supports three TE and three TM resonances
between the bottom and top of the potential well, XB = 27.5 and xr = 40.5. In addition, one can
see from the graph that the size parameter for a TE resonance is always slightly less thaci for the
equivalent TM resonance. An accurate computer solution of these equations gives the following

19



results: the TE resonances are located at 31.058854, 34.611195, and 37.653070 and the TM
resonances are located at 31.519210, 34.996041, and 37.908035. The curves shown in Fig. 2
continue to intersect at an infinite number of points in the region x > XT, i.e., above the top of the
potential well. In general, the electromagnetic modes at these points are not counted as
resonances because they are too wide to have the general properties associated with a resonance,
such as a sharp spike in the scattering cross section. These "above the top of the well" states will
be discussed further in Section 5.

10

d

0
g (TE) '

-10
0 10 20 30 40

x
Figure 2. Graphical Soluton to Eqs. (26ab). Intersection points are the size
parameters of the TE and TM resonances in the region between the bottom and
top of the potential well.
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The wave functions for the three TE resonances are shown graphically in Fig. 3. These wave
functions are the Debye potential functions, So(r), obtained by solving Eq. (5a). They are
shown superimposed, at the proper level, on the potential function V4o(r). Within the region of
the potential well, these wave functions resemble bound states. The lowest level wave function has
a single peak, the next level has two peaks (positive and negative), and the third level has three
peaks. The number of peaks in the classically allowed region of the potential well , r, r •a, is
called the order number and is denoted by 1. This number, along with the mode number n and
the label TE or TM, uniquely identifies a resonance. Electromagnetic energy is temporarily
trapped in the potential well. It can enter and leave by tunnelling through the outer centrifugal
barrier of the potential well. The width of the resonance is inversely proportional to the lifetime
of the trapped energy, which, in turn, is determined by the rate of tunneling through the barrier.
The levels near the bottom of the well must tunnel through a larger barrier than the upper levels.
Therefore, the lower levels have a longer lifetime and hence a narrower width than the upper
levels. The widths of the three TE resonances (which were calculated using Eq. (34) in the
following section) are 0.00008782, 0.01023, and 0.1297.

x = 37.653070

x =34.611195

X •_= 31.058854

Figure 3. Radial wave functions for the three TE, n = 40 resonances.
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Fig. 4 shows the dramatic change that the wave function experiences as the system traverses
through the TE, n = 40, 1 = 2 resonance, located at x0 = 34.611195. For graphical convenience,
the particle radius is a = 1.0. The top panel of Fig. 4 shows the wave function for the case
x = 34.911195, which is above the resonance. The wave function S4o(r) is shown superimposed,
at the proper level, on a plot of the potential function. The wave function shows an exponential-
like increase in the tunneling region. Because of this growth, the amplitude of the wave function
in the region r > r,, outside the particle, is much greater than the amplitude inside the particle.
The center panel shows the case x = 34.611195, which is on resonance. In this case, the wave
function decays in an exponential-like manner in the tunneling region. This behavior is opposite
from the previous case. The amplitude of the wave function inside the particle is now much
larger than the amplitude outside. The result is that as one approaches the particle, the field
strength increases rapidly in the region a < r < r,, which is a layer just outside the surface, and
then continues to rise to a maximum inside the particle near the surface. This increased field
strength near the surface (both inside and outside the particle) is a characteristic resonance
phenomenon. Finally, the bottom panel shows the case x = 34.311195, which is below the
resonance. The behavior in this case is very similar to that in the top panel, i.e., the wave function
increases exponential-like in the tunneling region, resulting in a small amplitude inside the
particle relative to the amplitude outside. However, in this case, the exponential-like growth in the
tunneling region is in the negative direction compared to the top panel. This results in a 1800

- - ---- --- x>xO

--------------- x<x0

Figure 4. Behavior of the TE wave function in the vicinity of a resonance. The
top panel shows the behavior for a size parameter value slighty above the
resonance, the middle panel is on resonance, and the bottom panel is below the
resonance.
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phase shift of the outside wave function compared to its phase in the top panel. This 1800 phase
shift is also a characteristic feature of a shape resonance.

The amplitudes of the wave functions shown in Figs. 3 and 4 cannot be directly compared with
each other because each of these fu"tions has been individually normalized to fit on the graph.
To compare the peak amplitudes, it is necessary to normalize the wave functions so that they all
have the same amplitude at r -- -c. If we choose the wave amplitude at infinity to be 1. the
following results are obtained: The peak amplitudes of the wave functions shown in Fig. 3 are
(from top to bottom) 5.00, 18.67, and 225.25. The peak amplitudes (inside the particle) for the
wave functions shown in Fig. 4 are (from top to bottom) 0.379, 18.67, and 0.274.

The picture that has been developed in this section, which portrays an MDR as a quasi-bound
state, trapped in a potential well and connected to the outside world by tunneling, gives added
intuition and insight into the nature of electromagnetic scattering resonances. This intuition is
especially valuable for more complicated problems in which the particle has a layered structure2 1

or a continuously varying index of refraction 22.

3.3 PARTICLES WITH NEGATIVE DIELECTRIC FUNCTIONS
The dielectric function, £(wo), of many materials is negative over a portion of the frequency
spectrum. Examples are metals in the range w < a)I, where op is the plasma frequency and
crystalline solids, such as NaCI, in the range 0oT < W < WoL where ulr and COL are the transverse and
longitudinal optical frequencies. 23 In this discussion, we will assume that the real part of the
dielectric function is negative, and that the imaginary part is small and can be set equal to zero.
The index of refraction is related to the dielectric function by m2 = F. Thus, at a frequency
where m2 < 0, the potential function given by Eq. (17) is a positive quantity.

As the first example case, consider a layered particle with a positive dielectric core covered by
negative dielectric layer. The core has a radius a, = 1.0 and index of refraction in1 = 1.47. The
outer layer has a thickness Aa = 0.05 and index of refraction m2 = 0.8i (where i is the
imaginary unit). The potential function, V, (r), for the case n = 40 and k = 45, is shown, plotted
to scale in Fig. 5. The bottom of the potential well is k, = (n + 1 / 2) / nh. This is the same as in

V

0

0 1 r 2

Figure 5. Effective potential function for a layered sphere with a positive
dielectric core covered by a negative dielectric layer.
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the previous example problem. However, there is no top to the potential well as defined
previously. That is, there is no value kT for which k 2 coincides with the top of the well. As the
value of k2 is increased, the top of the barrier also increases in such a manner that it always
exceeds k2. The wave function can tunnel through this barrier and become temporarily trapped
in resonant states just as in the previous analysis.

Consider next a sphere composed entirely of a negative dielectric material. This is an interesting
system because it has both scattering-state and bound-state solutions. This occurs because the
potential defined by Eq. (17) changes from a repulsive barrier when k 2 > 0 to an attractive
potential well when k2 < 0. To illustrate this, consider a particle of radius a = 1.0 and index of
refraction m = 0.8i. Fig. 6a shows the potential, V.(r), and the energy level, k2, for the case
n = 40 and k = 45. The potential forms a repulsive barrier that keeps the wave function from

(a)

V

0
1 r 2

(b)

0

V

0 1 r 2

Figure 6. Effective potential associated with a negative dielectric particle. (a)
the case k2 > 0. (b) the case k2 < 0.
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penetrating beyond a skin depth into the particle. The region inside the particle is classically
forbidden and the region outside is classically allowed. This situation is reversed if we let k2 < 0.
Then the classically allowed region is inside the particle, and the classically forbidden region is
outside. This is shown in Fig 6b where the system is identical to that in Fig 6a with the exception
that we now let k = 70i. Because k2 < 0, the potential is negative. Thus, an attractive potential
well is formed as shown. This situation is analogous to the quantum mechanical bound-state
problem. Only selected eigenvalues of k2 are allowed because the wave function must satisfy
boundary conditions similar to those for resonances. The difference, in this case, is that the wave
function cannot tunnel through a barrier, but must continue to decay exponentially to zero.
Thus, these are true bound states. There is no radiative energy loss. (However, the inevitable
internal energy loss that occurs in any real system will cause these modes to decay. In order for
these modes to exist, there must be some mechanism to pump energy into them to replace the
internal losses.) A part of the wave function penetrates into the forbidden region outside of the
sphere to form an evanescent wave near the surface of the sphere.

The allowed eigenvalues of k can be computed in a manner analogous to that used to calculate
the locations of the resonances. The spectrum of eigenvalues, k2., , forms a sequence of negative

values that begins at the upper (least negative) value and decreases in quantized steps for 1 =
1,2,3,.... An upper bound to this sequence is obtained when k 2 coincides with the bottom of the
potential well. This upper bound (which is a negative number) is given by

k 2 n(n + 1)
m 2a 2  (27)

For the example case we are considering, k2 = -2562.5 (i.e., ku = 50.62i ). The spectrum of
eigenvalues k.", begins at a value below this upper bound and forms a decreasing sequence of
quantized levels that continues without end. In quantum mechanics, the energy eigenvalues begin
at a ground state near the bottom of the potential well and increase in quantized steps. At first
sight, the present system does not seem to behave this way since the eigenvalues decrease in
quantized steps. The reason for the apparent difference is because the bottom of the potential
well is decreasing at an even faster rate than the eigenvalues k2 . Therefore, the interval between
the levels k•,t and the bottom of the well actually increase in quantized steps exactly as in the
quantum mechanical case.
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4. RESONANCE WIDTHS

Useful analytic expressions for calculating resonance widths are derived in this section. These
formulas cover the four cases involving TE and TM resonances for both real and complex indices
of refraction.

4.1 TE RESONANCE, REAL INDEX OF REFRACTION

A "rE resonance is characterized by a sharp peak in the real part of the b, (x) coefficient. 1 The
resonance is located at a size parameter that satisfies the relation (3,(xo) = 0. Since the index of
refraction is real, it follows from Eq. (14a) that the function fl, (x) is real. This fact, combined
with Eq. (15a), gives the following expression for the real part of b.(x)

Refb.(x)] = 1 (28)

At the center of the resonance this function has a maximum value Re[b. (xo)] = 1, which drops
off sharply on either side of x0 . The width of the resonance, w, (xo), is defined to be the distance
between the points x., on either side of x0 where the amplitude has decreased to half its
maximum value, i.e., to Re[b.(x,,)] = 1/ 2. It follows from Eq. (28) that the half-amplitude
points satisfy the relation #.((x:,) = 1.

To a good approximation, the function f8,(x) can be represented by the linear term of a Taylor
series expansion around x0,

AW(x) = fP.3(xo)(x - x0), (29)

where the prime denotes the derivative with respect to x. Within this linear approximation, the
half amplitude points are x.. = x0 ± Ax, where fl.(xo) )Ax 1. Thus, the width is given by

2
w. (xo) = 2 (30)

Differentiate expression (14a) with respect to x and evaluate the result at x0. The result is
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•(XO) - -() ("a") G'(x0 ) 1 (31)
V,,, (xo) mD,, (mX)-D,, (x)

This expression can be simplified with the aid of the following formulas

, (x) = + 1) - D,2,(x), (32a)

n(n + )
(x) = (32)

and

G,, (x) - D. (x) = g(x)X,, (x)]-'. (33)

The latter formula was obtained by use of the Wronskian relation for Riccati-Bessel functions.

Substitute the derivatives given by Eq. (32) into Eq. (31). Then use Eq. (24a) to replace
mD(mxo) by G(x,). Finally, use Eq. (33) to simplify the result. The result of all this
manipulation is a very simple expression for P(xo), which can be substituted into Eq. (30) to
give the following simple analytic formula for the width of a TE resonance:

w"(x°) = (M 2 2 (34)
28 1).Z2(XO)
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4.2 TM RESONANCE, REAL INDEX OF REFRACTION

Using the same analysis as in the previous case, the following expression is obtained for the width
of a TM resonance:

2
( =,(x- (35)

Differentiate expression (14b) to obtain

.,'(X)=m"Xo(x) [G.(x0,)-D,,(mx0) 136
Vx(x0) LmD.(xO-D,(nx)J(36)

Equations (32), (33) and (24b) are then used to simplify this expression. Substitute the
simplified result into Eq. (35) to obtain the following "exact" formula for the TM resonance

(X0 = 2 (37)(mI - 1)42(Xo) n(--n +:1) + G(xo)]

IM2 X2 I\OLmxo

4.3 TE RESONANCE, COMPLEX INDEX OF REFRACTION

If the index of refraction is allowed to become complex, the function fl,(x), which depends
parametrically on m = mr + imi, will also be complex. To explicitly indicate this dependence, we
will write P3,(m;x). The Taylor series expansion of P3,(m;x), which was carried out previously
with respect to the size parameter, x, can be extended to also include an expansion with respect to
the index of refraction, m. The size parameter, x,will be expanded around the resonance point
x0, as in our previous analysis, and the index of refraction m will be expanded along the
imaginary axis around the point m = mr. The result is
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f(fl(m;x) = fl.(mXo)(X - XO)+ iy,(m;x). (38)

where the imaginary component, y(m;x), is given by

Y, (M; x) = mi XL --f•,m .x=) (39)

The subscript on the bracket in the above expression indicates that the derivative is to be
evaluated at m = mr.

Substitute the linear approximation (38) into Eq. (15a) and calculate the real part of b,,(x). The
result is

Re[b (x)] (40)
R[1+y ] 2+[3;(x-xo)](

This function exhibits a resonance peak centered at x0 . Thus, the position of the resonance is not
altered by adding a small imaginary component to the index of refraction. However, the
maximum value of the resonance peak at x. is changed. Evaluating Eq. (40) at xo gives

Re[b1(x0 )] (41)

The width of the resonance is defined to be the distance between the points where the amplitude
has decreased to half of its maximum value. Thus,

1
Re[b.(xo ± Ax)] =(42)

2(1+0y.)
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The maximum amplitude of the resonance peak at xo is called the resonance height 24 and will be
denoted by HR(mi;xo). Combine Eqs. (41) and (43) to obtain the following useful expression

H,(mi;xo)= w.(O;x°) (44)
w"(mi;x 0 )

This formula shows that the product of the height and width of the resonance is a constant, equal
to the "undamped" width w,(O;xo). The resonance height is a useful quantity because it is a
measure of how much a resonance is suppressed by the internal energy absorption. If no energy
is absorbed, the height has a maximum value of 1. If the height is very much less than 1, then the
resonance is, for all practical purposes, suppressed out of effective existence.

Differentiate Eq. (14a) with respect to m to get

do - x.(xo) D.(mzO)+mxOD.(mxO)1 (45)
dm = g(xo) I mD (mxo)-D.(x0 ) J]

Use Eqs. (32), (33) and (24a) to simplify this expression. The result is

-= XZ2(XO) {[1m- 1]-[G.(xo)+ G.,(xO)/xO]} (46)

dm m

Substitute this into Eq. (39) to get

y'. (M; Xo 0 Z;,2(Xo)(mr )i" 2.Io (47)

where ER is given by

E = [G,(xo)+G,(xo)l x0]. (48)
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Combine the results contained in expressions (34), (43) and (47) to obtain the following formula
for the width of a TE resonance:

w, (mr;x0) = w,,(0;xo)+ 2xo, m(1C( - E). (49)
m,

The quantity E, can be evaluated by an approximate semiclassical WKB analysis. The result
shows that JE, I = 01[] / n where 0[11] is a number of order unity. Therefore, for most resonances
1E.1 << 1, and, to a good approximation, it can be neglected in Eq. (49). Thus, the final simplified
result for the width of a TE resonance is

W.(r;X0 ) = +2x 0 MI. (50)
w(m2 _ 1),X (x0) Mr

The second term in the above expression, which is due to internal energy losses, sets a lower limit
on the width of a resonance. This term was derived previously by Arnold using a physical
argument based on a consideration of absorptive energy losses in a cavity.9 It prevents the
extremely narrow resonances that are sometimes predicted by theory when mi is neglected. Eqs.
(49) and (50) show that the width is a linear function of mi, as has been previously reported. 24' 25

This result can be used in Eq. (44) to calculate the height of the resonance. It is apparent that, in
cases where the undamped resonance width, w.(O;xo), is extremely small, a small value of mi can
lead, for all practical purposes, to the complete suppression of the resonance.

4.4 TM RESONANCE, COMPLEX INDEX OF REFRACTION

The analysis of this case is identical to the previous case with a, and a, replacing fl,, and b,,.
Equation (14b) for aI,(m;x) must be differentiated with respect to mr. The result, after
simplifying with the aid of Eq. (24b), is

da,. = Z.(X0) [xoD (in-o)- G(xo) (51)
drm V',,(xo)L G(xo)-D(xo) J
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This result can be further simplified with the use of Eqs. (33), (32a) and (24b). The result is

d Z.(x0 ) X + M2XO n(n + 1)] (52)
0 m [x +mXXoGO(Xo) m52)

Then, with the aid of expressions (37) and (43), we obtain the following formula for the width of
the TM resonance:

(53)•,,m,;o) •. (0;xo) + 2xom--1- ),(3
mr

where

G-.G(xo)- G,,(xo) x 54
(M2_1 ) n(n +1)1

LI 0  m 2+XO2

Similar remarks apply to the quantity T, as applied to the quantity E" defined by Eq. (48). For
most res o Enc << 1 and can be neglected. Therefore, the final simplified result for the
width of a TM resonance is

W.(mi;Xo) = 2 +2xo ML. (55)

33 '2 X2 +G,(Xo)]

33



5. GRAPHICAL REPRESENTATION OF THE RESONANCE SPECTRUM

Each of the scattering resonances of a spherical particle is characterized by several parameters.
These include the mode number, n, the order number, 1, the size parameter, x0 , the width,
w.(m,;x.), and the height, H,(m,;x0 ). It is useful to organize and present these data in such a
way that one can see global patterns that relate and correlate the parameters for the various
resonances. The most useful way of seeing these patterns is by a graphical display of the data.

Consider a two-dimensional diagram. The horizontal axis represents the mode number, n and
the vertical axis represents the parameter z , which is defined by

z=x-nlm (56)

where x is the size parameter. Recall that the bottom and top of the potential well are given by
x = (n + I / 2) / m and x = (n + 1 / 2), respectively [see Eqs. (23)]. Thus, the bottom of the
potential well is represented by the horizontal line z = 1 / (2m), and the top of the well is
represented by the line z = (1 - I / m)n + 1 / 2. Each resonance appears as a unique point in the
n - z plane. Most of these points fall in the wedge-shaped area between the lines representing the
top and bottom of the well. (A few resonances may lie above the top of the well; we will discuss
these later.) We can then draw a series of smooth curves through the points that represent
resonances with the same order number, I. We will refer to these as the "resonance curves". The
resonance curve for a given value of I defines a function of n, which we represent by Z, (n).

All this is illustrated in Fig. 7 where we show the TE resonances that fall in the range
1 < n < 200 for a spherical particle with index of refraction m = 1.47. The heavy straight line

80

0.6 .
60 0.1

Z ;.,,
- 10z40  - : - - -

40 - - ;. Figure 7. Graphical representation of TE resonance
- -- ,- -- parameters for a spherical particle with index of

"refraction m = 1.47. The resonances are located at
20 - -- "- - points on the solid curves corresponding to integer

values of n. Each curve represents the resonances of a
given order number. The dashed curves are contours

0 -of constant width. The heavy straight lines represent
the top and bottom of the potential well.
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segments that represent the top and bottom of the potential well can be easily identified in the
graph. The 16 solid curves are the resonance curves 4(n). The order numbers that label these
curves are listed on the right side of the graph. The resonances are located at the points of
intersection of the resonance curves with vertical lines that pass through the integer-valued points
on the n axis.

The TE width Eq. (34) assigns a width to each point in the n - z plane. This defines a surface on
which contour lines of constant width can be established. These contours are the dashed-line
curves in Fig. 7. The 11 contours shown are for the width values w = 0.6 and wi = 10-l where
j = 1,2,-.-10. The contours 0.6, 0.1, and 0.01 have been labeled; the remaining contours follow
in consecutive order. (Note that the contour for the width 0.6 is above the top of we well. This
will be discussed in more detail later.) These curves define a set of functions that we represent by
F~(n).

Approximate analyitic formulas can be written for the resonance curves, Z (n), and the width
contours, F,(n). The formula for the resonance curves is obtained directly from from an
asymptotic expression for resonance frequencies derived by Schiller and Byer26 [See Eq. 2 in
reference 261. The result is

Z,(n)1= 1 ,n+1//2. p _
2m 2 - m + 22 310m(n + 1 / 2)"'

+ m2p(2p2 / 3 -1)
21/3(m2 - 1)3/2 (n + 1 / 2)2/3 57)

where p = 1 for TE modes, p = l/m2 for TM modes, and ý, denotes the I th zero of the Airy
function Ai(ý).

The width contour functions, F,(n), can be derived from the formulas for resonance widths
developed by Probert-Jones 27 [See Eqs. (4) and(5) in reference 271. These formulas all have the
form

w, -A(n,u)exp[ - '(2u )] (58)

where the pre-exponential factor A(n,u) is slowly varying compared to the exponential factor.
The parameter u in this formula is defined by u = (n + 1 / 2) - x, i.e., it is the distance of the
resonance below the top of the well. Thus, it is complementary to our parameter z , which
essentially measures the distance of the resonance above the bottom of the potential well. The
relation between z and u is given by z = (n + 1 / 2) -n / m -u.
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If we neglect the effect of the pre-exponential factor in Eq. (58), then it is easy to see that the
width will remain constant along a curve defined by the relation u(n) = C.(n + 1 / 2)'" . where C,
is a constant. Transforming to z, we obtain our expression for the width contours,

F,,(n) = (n + I / 2) - n / m - CQn + 1 / 2)1 /3
(59)

In this work, we have chosen to only deal with resonances that lie in a range between the top and
bottom of the potential well. Previously, we noted that some resonances may have size parameters
that lie slightly above the top of the potential well. Actually, the formulas (24) that define the size
parameters of the resonances have solutions, x. , which extend to infinity. If the graph in Fig. 2
were extended to the right, the curves gITE(x) and g.(TM)(x) would continue to intersect the curve
d.(mx) indefinitely, with each intersection point representing a solution to the resonance condition.
However, most of the formal solutions that lie above the top of the well do not qualify as physically
meaningful resonances because they are too wide. The width of any of these predicted resonances
can be calculated by the analytic formulas (34) or (37), which are valid for all values of the size
parameter. It is somewhat a matter of judgment, depending on the problem, to decide where to set
an upper limit to the width. Hill and Benner chose to set the limit at w = 0.6 for a problem very
similar to our example problem. This contour, which lies very slightly above the top of the well, is
shown in Fig. 7. Very few resonances fall in the region between the top of the well and the w = 0.6
contour. Resonances above the top of the well are broad because there is no classically forbidden
tunneling region that acts as a barrier to trap the energy.

Figure 7 shows results for the case in which the imaginary component of the index of refraction
is zero. Adding a small imaginary component to the index of refraction will not affect the
resonance curves, but will have a large effect on the widths and heights of the very narrow
resonances. To illustrate this, consider the case in which the index of refraction is
m = 1.47 + il0-6. We have evaluated the TE resonance widths using Eq. (50). The width
contours are shown in Fig. 8. These should be compared to the contours in Fig. 7.
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Figure 8. Width contours for TE resonances of a particle with a complex index
of refraction m = 1.47 + i 0.000001.
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The height of a resonance is defined in Section 4 as the maximum value of the function
Re[b,(x)] (or Re[a,(x)]) at the center of the resonance. (This quantity is also equal to the
amplitude of the Mie coefficient Ib, (xj)1 (or Ia,(xA, at resonance). The height is 1.0 when the
index of refraction is real, i.e. when m, = 0. The height is less that 1.0 and given by the ratio of
the widths as expressed in Eq. (44) when m, * 0. This is an important quantity because it gives
an indication of the strength of the resonance. If the height is 1.0. the resonance has maximum
effectiveness in causing an enhancement of the cross section or in creating intense internal
electric fields in the particle. If the height is less than 1.0, the effectiveness of the resonance is
reduced, and, if it is much less that 1.0, the resonance is essentially damped out of effective
existence. Contours of constant "resonance height" for our example problem are shown in Fig. 9.
The height contours shown are 0.9, 0.5, 0.1, and 0.01. The resonances with heights greater than
0.9 are essentially full strength. The resonances with heights less than 0.01 are essentially
suppressed out of existence for most applications.
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Figure 9. Height contours for the TE resonances of a particle with complex
index of refraction m = 1.47 + i 0.000001.
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6. SUMMARY AND CONCLUDING REMARKS

The analogy between the radial Schrodinger eqlation and the differential equations for the
radial Debye potentials has been exploited for the purpose of analyzing electromagnetic
scattering resonances. These resonances are shown to be analogous to quantum mechanical
shape resonances. The picture developed in this report views these resonances as quasi-bound
states, temporarily trapped in a potential well of the type illustrated in Fig. 1. This viewpoint
provides some immediate intuitive insights into the nature of these resonances. For example, the
top and bottom of the potential well determine effective upper and lower bounds for the
resonance levels. The resonance widths, which are inversely proportional to the decay time of the
quasi-bound state, are determined by the rate at which energy can tunnel through the outer
barrier of the potential well. Since the lower levels must tunnel through a larger barrier the lower
levels have a longer lifetime and, thus, have narrower widths than the upper levels.

The condition that defines a shape resonance is similar to the condition that defines a bound state
in a potential well. This condition states that the wave function must decrease "exponentially" in
the classically forbidden regions outside the well. The application of this boundary condition
leads directly to Eqs. (24a) and (24b). These are the same equations that have been derived in
the theory of morphology-dependent resonances. 1 Figures 3 and 4 show the dramatic change
that occurs in the wave function at resonance. These graphs show how the exponential behavior
of the wave function in the classically forbidden region is responsible for the large electric-field
amplitudes near the surface of a particle at resonance.

The interpretation of resonances as the quasi-bound states of a potential well can be applied to
more complicated systems than a simple dielectric sphere. We briefly described one such system,
a layered sphere with a negative dielectric outer layer. (The potential function for this case is
illustrated in Fig. 5.) It is obvious that one can use a similar analysis to consider more
complicated problems in which the particle has a multilayered structure 21 or a continuously
varying index of refraction 22. This approach offers intuitive insights to these more complicated
resonance problems that are not available in the traditional picture, which views a resonance as a
wave propagating around the sphere, confined by internal reflections. 1

We have also used this analysis to briefly describe the very interesting case of a negative dielectric
sphere. This problem is interesting because the system has two distinct types of solutions. We
refer to these as the positive energy (k2 > 0) and negative energy (k2 < 0) solutions. For the
positive energy solution, the potential in the interior of the particle is a repulsive barrier
(illustrated in Fig. 6a) that keeps the wave function outside. This is a traditional scattering
problem that can be calculated by Mie theory. For the negative energy solution, the potential
inside the particle is a deep well (illustrated in Fig. 6b). This case is not a resonance problem, but
it is very similar and can be analyzed by the same methods used to study resonances. In this case,
the energy cannot tunnel out of the well; therefore, the electromagnetic modes are true bound
states. If it were not for the inevitable internal losses, these states would have an infinite lifetime.
These modes exist inside the particle with only a surface evanescent wave penetrating outside of
the particle.
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Exact analytic formulas for resonance widths were developed in Section 4. The final useful and
simplified results are contained in the two Eqs. (50) and (55). These formulas predict the widths
of TE and TM resonances, respectively, for both complex (mi * 0) and real (m, = 0) indices of
refraction. Another useful result of this section is the definition and discussion of the
significance of the resonance height. The formula for the height is given by Eq. (44).

in Section 5, we presented grapl-ical repescntations that we have found useful for correlating the
position, width (see Figs. 7 and 8), and height data (Fig. 9) for a spectrum of resonances.
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